

Standard Young Tableaux and the Hook Length Formula

A combinatorial excursion

Bailee Zacovic

Representation Theory of the Symmetric Group Seminar

Dr. Rene Marcinkowski
Universität Bonn

April 29, 2024

Contents

1 Hook-Length Formula	2
1.1 Historical Background: An amusing tale	2
1.2 Standard Young Tableaux and Paths in \mathbb{Y}	3
1.3 An experiment: Hook-Walks	4
1.4 A Probabilistic Proof	5

The reference text for this talk is [Lor18, Chapter 4]

1 Hook-Length Formula

1.1 Historical Background: An amusing tale

TABLE 1 Timeline

1900-02	<p>• Frobenius-Young determinantal formula for f^λ introduced:</p> <p>Theorem 1.1 (Determinantal Formula). <i>For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ a partition of n, we have</i></p> $f^\lambda = n! \left \frac{1}{(\lambda_i - i + j)!} \right ,$ <p><i>where this determinant is $m \times m$.</i></p>
1953	<p>• Robinson, Frame, and Thrall derive the hook-length formula for f^λ:</p> <p>Theorem 1.2 (Hook-Length Formula). <i>For λ a partition of n, we have</i></p> $f^\lambda = \frac{n!}{\prod_{x \in \lambda} h(x)}.$
1976	<p>• Hillman and Grassl provide first proof of the hook-length formula which leverages the hooks.</p>
1979	<p>• Greene, Nijenhuis, and Wilf develop a probabilistic proof leveraging hook walks (see [GNW79]).</p>
1980	<p>• Sagan applies the probabilistic algorithm of Greene, Nijenhuis, and Wilf to shifted Young tableaux via shifted hook walks (see [Sag80]).</p>
1982	<p>• Remmel, Franzblau and Zeilberger discover bijective proofs.</p>
1997	<p>• A direct bijective proof via Schützenberger's <i>jeu de taquin</i> algorithm presented by Novelli, Pak, and Stoyanovskii (see [NPS97]).</p>

This celebrated result has since found numerous applications across areas such as algebraic geometry, probability, analysis, and algorithms.

See [Sag80] for an inductive derivation of 1.2 from 1.1.

1.2 Standard Young Tableaux and Paths in \mathbb{Y}

Let \mathbb{Y} denote the *Young graph* and \mathbb{B} denote the *Branching graph* of the symmetric group \mathcal{S}_n .

Definition 1.2.1. A *standard Young tableaux* of shape λ (or a λ -tableaux) is obtained by filling a Young diagram of λ with $1, 2, \dots, n$ such that rows/columns are increasing.

The process of successively removing boxes containing the highest number yields a bijection:

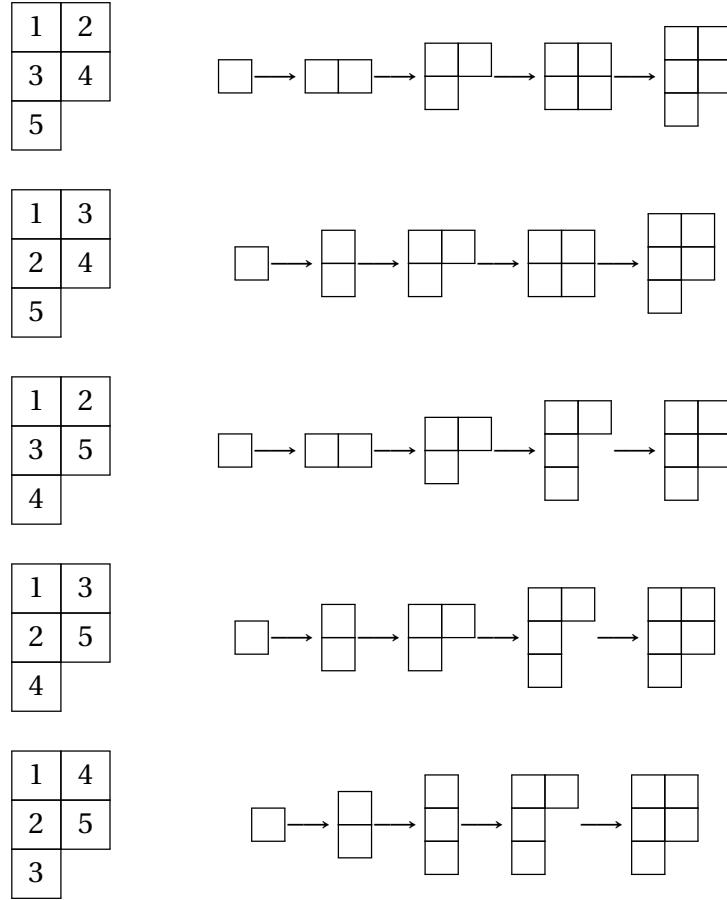
$$\{\text{paths } \square \rightarrow \dots \rightarrow \lambda \text{ in } \mathbb{Y}\} \xleftrightarrow{\sim} \{\lambda\text{-tableaux}\}.$$

Consequently, we will denote

$$f^\lambda := \#\{\lambda\text{-tableaux}\} = \#\{\text{paths } \square \rightarrow \dots \rightarrow \lambda \text{ in } \mathbb{Y}\} = \dim V^\lambda, \quad (1)$$

where $V^\lambda \in \text{Irr } \mathcal{S}_n$ is the irreducible representation associated to λ under the isomorphism $\mathbb{Y} \xrightarrow{\sim} \mathbb{B}$.

Example 1.2.2. We compute all the standard Young tableaux of shape $\lambda = (2, 2, 1)$ with their associated paths in \mathbb{Y} .



1.3 An experiment: Hook-Walks

Let λ be given by its Young diagram.

Definition 1.3.1. The *hook* at position x of λ consists of the boxes lying to the right and below x .

Definition 1.3.2. The *hook length* at x is given by

$$h(x) := \#\{\text{boxes in the hook at } x\}.$$

It is clear that x is removable if and only if $h(x) = 1$. We now introduce the Hook-Length Formula, the proof of which we assemble in the remainder of the talk.

Theorem 1.2 (Hook-Length Formula). *For λ a partition of n , we have*

$$f^\lambda = \frac{n!}{\prod_{x \in \lambda} h(x)}.$$

To penetrate this simple product formula, we avail ourselves of an example.

4	2
3	1
1	

Consider the partition $\lambda = (2, 2, 1)$. We fill each box with its respective hook length to obtain the following Young diagram. According to Theorem 1.2,

$$f^\lambda = \frac{5!}{4 \cdot 3 \cdot 2 \cdot 1^2} = 5,$$

which coincides with previous observations.

We now describe an experiment with which we will use to prove Theorem 1.2. In particular, we will consider a memoryless random walk ω on a Young diagram. To begin, consider a partition λ , and choose a box $x = x_0$ uniformly at random (that is, with probability $\frac{1}{n}$). If x is a removable box, stop; otherwise, select a box $x_1 \neq x$ from the hook at x uniformly at random (with probability $\frac{1}{h(x)-1}$). If x_1 is a removable box, stop; otherwise, repeat the above procedure. Since λ is finite, this process terminates after finitely many steps, and returns a walk

$$\omega : x = x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_t = c$$

for c removable. We call ω a *hook walk*, and our sample space Ω consisting of all hook walks ω of λ is finite. Then the probability of a given hook walk ω is

$$p(\omega) = \frac{1}{n} q(\omega), \text{ for } q(\omega) = q(x_0) q(x_1) \cdots q(x_{t-1}).$$

For each removable box c , denote $E_c = \{\text{hook walks where } x_t = c\}$. As these events partition our same set, we obtain

$$1 = \sum_{\omega \in \Omega} p(\omega) = \sum_c P(E_c) = \sum_c \frac{1}{n} \sum_{\omega \in E_c} q(\omega). \tag{2}$$

1.4 A Probabilistic Proof

We are now equipped to prove Theorem 1.2.

Proof of Theorem 1.2. Setting $H(\lambda) := \prod_{x \in \lambda} h(x)$, it suffices to show

$$f^\lambda = \frac{n!}{H(\lambda)}.$$

To this end, we perform an induction on n . The statement is clear when $n = 1$.

Now, let $n > 1$. Recall that each path $\square \rightarrow \dots \rightarrow \lambda$ restricts to a path $\square \rightarrow \dots \rightarrow \mu$ for some $\mu \rightarrow \lambda$; conversely, each path $\square \rightarrow \dots \rightarrow \mu$ for $\mu \rightarrow \lambda$ “lifts” to a unique path to λ . By $\mu \rightarrow \lambda$, we mean μ is obtained from λ by deleting a removable box c , and each μ arises uniquely in this way. Thus, we may denote $\mu := \lambda \setminus c$. These observations yields the following recursion:

$$f^\lambda = \sum_c f^{\lambda \setminus c}, \quad (3)$$

where c ranges over all removable boxes. By our induction hypothesis, we have

$$f^{\lambda \setminus c} = \frac{(n-1)!}{H(\lambda \setminus c)}.$$

Recasting (3), we may equivalently show

$$\frac{n!}{H(\lambda)} = \sum_c \frac{(n-1)!}{H(\lambda \setminus c)} \iff 1 = \sum_c \frac{1}{n} \frac{H(\lambda)}{H(\lambda \setminus c)}, \quad (4)$$

where c ranges over all removable boxes. Via (2), we recast once more, and now aim to show

$$\sum_{\omega \in E_c} q(\omega) = \frac{H(\lambda)}{H(\lambda \setminus c)}. \quad (5)$$

We now consider the left- and right-hand sides of (5) separately. For the right-hand side, notice that the only hooks of $\lambda \setminus c$ which differ from those of λ are those at those x lying in the same row or column as c (excluding c itself). Let \mathbf{B} denote this region, which we mark in in Figure 1. These hooks have length exactly 1 less in $\lambda \setminus c$. We may therefore reformulate the right-hand side as,

$$\frac{H(\lambda)}{H(\lambda \setminus c)} = \prod_{b \in \mathbf{B}} \frac{h(b)}{h(b) - 1}.$$

Recalling that $q(b) = \frac{1}{h(b)-1}$ from Section 1.3, we get $\prod_{b \in \mathbf{B}} \frac{h(b)}{h(b)-1} = \prod_{b \in \mathbf{B}} (1 + q(b))$. Thus, we recast our right-hand side once more and obtain,

$$\frac{H(\lambda)}{H(\lambda \setminus c)} = \prod_{b \in \mathbf{B}} (1 + q(b)) = \sum_{S \subset \mathbf{B}} \prod_{b \in S} q(b). \quad (6)$$

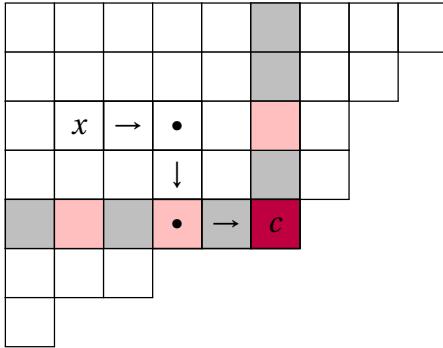


Figure 1: A hook walk $\omega \in E_c$

Regarding the left-hand side, fix a hook walk $\omega \in E_c$ (see $x \rightarrow \dots \rightarrow c$ in Figure 1). We denote by $S_\omega \subset \mathbf{B}$ the set of boxes which arise as the horizontal and vertical projections of the boxes of ω into \mathbf{B} (see ■ in Figure 1.) Observe that these projections always determine the starting point x . If it further happens that $x \in \mathbf{B}$, then these projections determine the entire hook walk ω as well.

If it happens that

$$\sum_{\substack{\omega \in E_c \\ S_\omega = S}} q(\omega) = \prod_{b \in S} q(b), \quad (7)$$

then we would obtain

$$\sum_{\omega \in E_c} q(\omega) = \sum_{S \subset \mathbf{B}} \sum_{\substack{\omega \in E_c \\ S_\omega = S}} q(\omega) \stackrel{(7)}{=} \sum_{S \subset \mathbf{B}} \prod_{b \in S} q(b) \stackrel{(6)}{=} \frac{H(\lambda)}{H(\lambda \setminus c)},$$

as desired.

Thus, it remains to establish (7). To this end, we argue by induction on $|S|$, $S \subset \mathbf{B}$. The claim is clear when $|S| = 0, 1$, as these correspond to the hook walks ω where $x = c$ or $x \in \mathbf{B}$, respectively. In both cases the left- and right-hand sides of (7) consist of one term. So let $x \notin \mathbf{B} \cup \{c\}$.

Let x_H, x_V denote the horizontal and vertical projections of x into \mathbf{B} , respectively. Any hook walk $\omega \in E_c$ achieving $S_\omega = S$ starts either with a move down or a move to the right. For η the remainder of the walk after x , we have $S_\eta = S \setminus \{x_H\}$ in the former case, and $S_\eta = S \setminus \{x_V\}$ in the latter. Quickly note by Figure 2 that,

$$h(x) + 1 = h(x_H) + h(x_V).$$

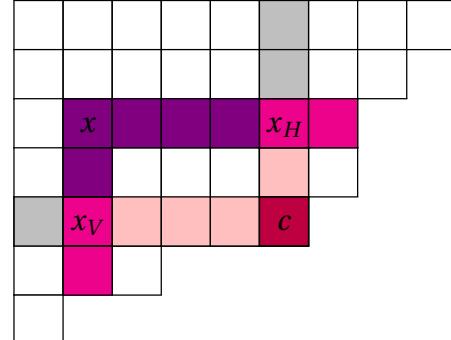


Figure 2: Illustrating Equation (8)

From this it follows that

$$1 = q(x) \left(\frac{1}{q(x_H)} + \frac{1}{q(x_V)} \right). \quad (8)$$

We therefore deduce,

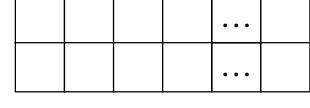
$$\begin{aligned}
\sum_{\substack{\omega \in E_C \\ S_\omega = S}} q(\omega) &= q(x) \left(\sum_{\substack{\eta \in E_C \\ S_\eta = S \setminus \{x_H\}}} q(\eta) + \sum_{\substack{\eta \in E_C \\ S_\eta = S \setminus \{x_V\}}} q(\eta) \right) \\
&\stackrel{\text{I.H.}}{=} q(x) \left(\prod_{b \in S \setminus \{x_H\}} q(b) + \prod_{b \in S \setminus \{x_V\}} q(b) \right) \\
&= q(x) \left(\frac{1}{q(x_H)} + \frac{1}{q(x_V)} \right) \prod_{b \in S} q(b) \\
&\stackrel{(8)}{=} \prod_{b \in S} q(b),
\end{aligned}$$

which completes the proof of the hook-length formula. \square

Exercise 1.4.1 (Rectangle Partitions). *Show that $f^{(n,n)} = \frac{1}{n+1} \binom{2n}{n}$, the n th Catalan number*

Proof. Let R_1, R_2 denote the first and second rows of the Young diagram of (n, n) , respectively. Then,

$$\prod_{x \in (n,n)} h(x) = \left(\prod_{x \in R_1} h(x) \right) \cdot \left(\prod_{x \in R_2} h(x) \right) = (n+1)! \cdot n! = \frac{1}{n+1} n! n!$$



It follows by 1.2 that $f^{(n,n)} = \frac{(2n)!}{(n+1)n!n!} = \frac{1}{n+1} \binom{2n}{n}$. \square

*See [Lor18, Exercise 4.3.3]

References

- [GNW79] Curtis Greene, Albert Nijenhuis, and Herbert S. Wilf. “A probabilistic proof of a formula for the number of Young tableaux of a given shape”. In: *Adv. in Math.* 31.1 (1979), pp. 104–109. ISSN: 0001-8708. DOI: [10.1016/0001-8708\(79\)90023-9](https://doi.org/10.1016/0001-8708(79)90023-9). URL: [https://doi.org/10.1016/0001-8708\(79\)90023-9](https://doi.org/10.1016/0001-8708(79)90023-9).
- [Lor18] Martin Lorenz. *A tour of representation theory*. Vol. 193. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018, pp. xvii+654. ISBN: 978-1-4704-3680-3. DOI: [10.1090/gsm/193](https://doi.org/10.1090/gsm/193). URL: <https://doi.org/10.1090/gsm/193>.
- [NPS97] Jean-Christophe Novelli, Igor Pak, and Alexander V. Stoyanovskii. “A direct bijective proof of the hook-length formula”. In: *Discrete Math. Theor. Comput. Sci.* 1.1 (1997), pp. 53–67. ISSN: 1365-8050.
- [Sag80] Bruce Sagan. “On selecting a random shifted Young tableau”. In: *J. Algorithms* 1.3 (1980), pp. 213–234. ISSN: 0196-6774. DOI: [10.1016/0196-6774\(80\)90010-3](https://doi.org/10.1016/0196-6774(80)90010-3). URL: [https://doi.org/10.1016/0196-6774\(80\)90010-3](https://doi.org/10.1016/0196-6774(80)90010-3).