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1 Hook-Length Formula

1.1 Historical Background: An amusing tale

TaBLE1l Timeline

1900-02 ¢ Frobenius-Young determinantal formula for f*
introduced:

Theorem 1.1 (Determinantal Formula). For
A= (A1, Ag,...,Ay) a partition of n, we have
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where this determinant is m x m.

1953 ¢ Robinson, Frame, and Thrall derive the hook-length

formula for f*:

Theorem 1.2 (Hook-Length Formula). For A a
partition of n, we have

n!
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1976 ¢ Hillman and Grassl provide first proof of the
hook-length formula which leverages the hooks.
Greene, Nijenhuis, and Wilf develop a probabilistic
proof leveraging hook walks (see [ D).

Sagan applies the probabilistic algorithm of Greene,
Nijenhuis, and Wilf to shifted Young tableaux via
shifted hook walks (see [ D.

Remmel, Franzblau and Zeilberger discover bijective
proofs.

A direct bijective proof via Schiitzenberger’s jeu de
taquin algorithm presented by Novelli, Pak, and
Stoyanovskii (see [ D.

1979

1980

1982 1

1997 1

This celebrated result has since found numerous applications across areas such
as algebraic geometry, probability, analysis, and algorithms.
See [ ] for an inductive derivation of 1.2 from 1.1.




1.2 Standard Young Tableaux and Paths in Y
Let Y denote the Young graph and B denote the Branching graph of the symmetric
group S,.

Definition 1.2.1. A standard Young tableaux of shape A (or a A-tableaux) is ob-
tained by filling a Young diagram of A with 1,2,...,n such that rows/columns are
increasing.

The process of successively removing boxes containing the highest number yields
a bijection:
{paths 0 — --- — 1 in Y} — {1 — tableaux}.

Consequently, we will denote
f‘ :=#{A —tableaux} = #{paths O — --- - 1in Y} = dimv?, (1D

where V* € Irr 8, is the irreducible representation associated to A under the isomor-
phism Y — B.

Example 1.2.2. We compute all the standard Young tableaux of shape 1 = (2,2,1)
with their associated paths in Y.
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1.3 An experiment: Hook-Walks

Let A be given by its Young diagram.

Definition 1.3.1. The hook at position x of A consists of the boxes lying to the right
and below x.

Definition 1.3.2. The hook length at x is given by
h(x) :=#{boxes in the hook at x}.

It is clear that x is removable if and only if (x) = 1. We now introduce the Hook-
Length Formula, the proof of which we assemble in the remainder of the talk.

Theorem 1.2 (Hook-Length Formula). For A a partition of n, we have
n!
[xer h(x)°
To penetrate this simple product formula, we avail ourselves of an example.
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Consider the partition A = (2,2, 1). We fill each box with its respective hook
length to obtain the following Young diagram. According to Theorem 1.2,
5!
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which coincides with previous observations.

We now describe an experiment with which we will use to prove Theorem 1.2.
In particular, we will consider a memoryless random walk w on a Young diagram.
To begin, consider a partition A, and choose a box x = xy uniformly at random (that
is, with probability 1). If x is a removable box, stop; otherwise, select a box x; # x
from the hook at x uniformly at random (with probability ;). If x; is a remov-
able box, stop; otherwise, repeat the above procedure. Since A is finite, this process
terminates after finitely many steps, and returns a walk
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for ¢ removable. We call w a hook walk, and our sample space Q consisting of all
hook walks w of A is finite. Then the probability of a given hook walk w is

1
pw) = ;q(w), for g(w) = g(x0)q(x1)--- q(x¢-1).

For each removable box ¢, denote E. = {hook walks where x; = ¢}. As these events
partition our same set, we obtain
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1.4 A Probabilistic Proof
We are now equipped to prove Theorem 1.2.
Proof of Theorem 1.2. Setting H(A) := [1 e h(x), it suffices to show

n!
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To this end, we perform an induction on n. The statement is clear when n = 1.

Now, let n > 1. Recall that each path O — --- — A restricts toapathO — --- — u for
some p — A; conversely, each path O — --- — u for p — A “lifts” to a unique path to
A.By u— A, we mean p is obtained from A by deleting a removable box ¢, and each
u arises uniquely in this way. Thus, we may denote u := A\ ¢. These observations
yields the following recursion:

fﬂ — Zf)l\c’ (3)
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where c ranges over all removable boxes. By our induction hypothesis, we have
e =1l

 HA\o)
Recasting (3), we may equivalently show

(n-1)! <1 HW

n!
H(A) _;H()L\c) T ~nH(A\¢)’ (4)

where c ranges over all removable boxes. Via (2), we recast once more, and now aim

to show
HA)
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We now consider the left- and right-hand sides of (5) separately. For the right-
hand side, notice that the only hooks of A\ ¢ which differ from those of A are those
at those x lying in the same row or column as ¢ (excluding c itself). Let B denote this
region, which we mark in " in Figure 1. These hooks have length exactly 1 less in
A\ c. We may therefore reformulate the right-hand side as,

HO__ kb
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Recalling that g(b) = ﬁ from Section 1.3, we get [T,cp % = [1pe(1 + g(b)).
Thus, we recast our right-hand side once more and obtain,

HA) _
e~ [Ta+qwy=>Y [[qw. (6)
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Figure 1: Ahook walk w € E,

If it happens that

Regarding the left-hand side, fix a hook
walk w € E. (see x — --- — ¢ in Figure
1). We denote by S, < B the set of boxes
which arise as the horizontal and verti-
cal projections of the boxes of w into B
(see  in Figure 1.) Observe that these
projections always determine the start-
ing point x. If it further happens that x €
B, then these projections determine the
entire hook walk w as well.
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then we would obtain
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as desired.
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Thus, it remains to establish (7). To this end, we argue by induction on |S|, S < B.
The claim is clear when |S| = 0,1, as these correspond to the hook walks w where
x = cor x € B, respectively. In both cases the left- and right-hand sides of (7) consist

of one term. So let x ¢ Bu {c}.

Let xy, xy denote the horizontal and ver-
tical projections of x into B, respectively.
Any hook walk w € E. achieving S, = S
starts either with a move down or a move
to the right. For n the remainder of the
walk after x, we have S, = S\ {xg} in the
former case, and S, = S\ {xy} in the latter.

Quickly note by Figure 2 that,
h(x)+1=h(xg) + h(xy).

From this it follows that
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Figure 2: Illustrating Equation (8)
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We therefore deduce,
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which completes the proof of the hook-length formula. O

Exercise 1.4.1 (Rectangle Partitions). Show that f"" = —1-(*"), the nth Catalan
number

Proof. Let Ry, R, denote the first and second rows of the Young diagram of (n, n),
respectively. Then,

n'n!

[ h(x):(l_[ h(x))'(]_[ h(x)):(n+1)!-n!: nil

xe(n,n) XER, XER>

It follows by 1.2 that f»? = 2l — ﬁ(z,?) =

(n+1)n'n!

*See [ , Exercise 4.3.3]
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