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1 Hook-Length Formula

1.1 Historical Background: An amusing tale

TABLE 1 Timeline

1900-02 • Frobenius-Young determinantal formula for f λ

introduced:

Theorem 1.1 (Determinantal Formula). For
λ= (λ1,λ2, . . . ,λm) a partition of n, we have

f λ = n!

∣∣∣∣ 1

(λi − i + j )!

∣∣∣∣ ,

where this determinant is m ×m.

1953 • Robinson, Frame, and Thrall derive the hook-length
formula for f λ:

Theorem 1.2 (Hook-Length Formula). For λ a
partition of n, we have

f λ = n!∏
x∈λh(x)

.

1976 • Hillman and Grassl provide first proof of the
hook-length formula which leverages the hooks.

1979 • Greene, Nijenhuis, andWilf develop a probabilistic
proof leveraging hook walks (see [GNW79]).

1980 • Sagan applies the probabilistic algorithm of Greene,
Nijenhuis, andWilf to shifted Young tableaux via
shifted hook walks (see [Sag80]).

1982 • Remmel, Franzblau and Zeilberger discover bijective
proofs.

1997 • A direct bijective proof via Schützenberger’s jeu de
taquin algorithm presented by Novelli, Pak, and
Stoyanovskii (see [NPS97]).

This celebrated result has since foundnumerous applications across areas such
as algebraic geometry, probability, analysis, and algorithms.

See [Sag80] for an inductive derivation of 1.2 from 1.1.
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1.2 Standard Young Tableaux and Paths in Y
Let Y denote the Young graph and B denote the Branching graph of the symmetric
group Sn .

Definition 1.2.1. A standard Young tableaux of shape λ (or a λ-tableaux) is ob-
tained by filling a Young diagram of λ with 1,2, . . . ,n such that rows/columns are
increasing.

Theprocessof successively removingboxescontaining thehighestnumberyields
a bijection:

{paths□→ ···→λ in Y}
∼←→ {λ− tableaux}.

Consequently, we will denote
f λ := #{λ− tableaux} = #{paths□→ ···→λ in Y} =dimV λ, (1)

whereV λ ∈ Irr Sn is the irreducible representationassociated toλunder the isomor-
phism Y

∼→B.
Example 1.2.2. We compute all the standard Young tableaux of shape λ = (2,2,1)
with their associated paths in Y.
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1.3 An experiment: Hook-Walks
Let λ be given by its Young diagram.
Definition 1.3.1. The hook at position x of λ consists of the boxes lying to the right
and below x.

Definition 1.3.2. The hook length at x is given by
h(x) := #{boxes in the hook at x}.

It is clear that x is removable if and only if h(x) = 1. We now introduce the Hook-
Length Formula, the proof of which we assemble in the remainder of the talk.
Theorem 1.2 (Hook-Length Formula). For λ a partition of n, we have

f λ = n!∏
x∈λh(x)

.

To penetrate this simple product formula, we avail ourselves of an example.

4 2

3 1

1

Consider the partition λ= (2,2,1).Wefill each boxwith its respective hook
length to obtain the following Young diagram. According to Theorem 1.2,

f λ = 5!

4 ·3 ·2 ·12
= 5,

which coincides with previous observations.
We now describe an experiment with which we will use to prove Theorem 1.2.

In particular, we will consider a memoryless random walk ω on a Young diagram.
To begin, consider a partition λ, and choose a box x = x0 uniformly at random (that
is, with probability 1

n ). If x is a removable box, stop; otherwise, select a box x1 ̸= x
from the hook at x uniformly at random (with probability 1

h(x)−1). If x1 is a remov-
able box, stop; otherwise, repeat the above procedure. Since λ is finite, this process
terminates after finitely many steps, and returns a walk

ω : x = x0 → x1 →···→ xt = c

for c removable. We call ω a hook walk, and our sample space Ω consisting of all
hook walks ω of λ is finite. Then the probability of a given hook walk ω is

p(ω) = 1

n
q(ω), for q(ω) = q(x0)q(x1) · · ·q(xt−1).

For each removable box c, denote Ec = {hook walks where xt = c}. As these events
partition our same set, we obtain

1 = ∑
ω∈Ω

p(ω) =∑
c

P (Ec ) =∑
c

1

n

∑
ω∈Ec

q(ω). (2)
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1.4 A Probabilistic Proof
We are now equipped to prove Theorem 1.2.

Proof of Theorem 1.2. Setting H(λ) :=∏
x∈λh(x), it suffices to show

f λ = n!

H(λ)
.

To this end, we perform an induction on n. The statement is clear when n = 1.
Now, let n > 1. Recall that each path□→ ···→λ restricts to a path□→ ···→µ for

some µ→ λ; conversely, each path □→ ·· · → µ for µ→ λ “lifts” to a unique path to
λ. By µ→ λ, wemean µ is obtained from λ by deleting a removable box c, and each
µ arises uniquely in this way. Thus, we may denote µ := λ \ c. These observations
yields the following recursion:

f λ =∑
c

f λ\c , (3)

where c ranges over all removable boxes. By our induction hypothesis, we have

f λ\c = (n −1)!

H(λ\ c)
.

Recasting (3), wemay equivalently show

n!

H(λ)
=∑

c

(n −1)!

H(λ\ c)
⇐⇒ 1 =∑

c

1

n

H(λ)

H(λ\ c)
, (4)

where c ranges over all removable boxes. Via (2), we recast oncemore, andnowaim
to show ∑

ω∈Ec

q(ω) = H(λ)

H(λ\ c)
. (5)

We now consider the left- and right-hand sides of (5) separately. For the right-
hand side, notice that the only hooks of λ \ c which differ from those of λ are those
at those x lying in the same rowor columnas c (excluding c itself). LetBdenote this
region, which we mark in in Figure 1. These hooks have length exactly 1 less in
λ\ c. Wemay therefore reformulate the right-hand side as,

H(λ)

H(λ\ c)
= ∏

b∈B

h(b)

h(b)−1
.

Recalling that q(b) = 1
h(b)−1 from Section 1.3, we get ∏

b∈B
h(b)

h(b)−1 = ∏
b∈B(1+ q(b)).

Thus, we recast our right-hand side oncemore and obtain,

H(λ)

H(λ\ c)
= ∏

b∈B
(1+q(b)) = ∑

S⊂B

∏
b∈S

q(b). (6)
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Figure 1: A hook walk ω ∈ Ec

Regarding the left-hand side, fix a hook
walk ω ∈ Ec (see x → ··· → c in Figure
1). We denote by Sω ⊂ B the set of boxes
which arise as the horizontal and verti-
cal projections of the boxes of ω into B
(see in Figure 1.) Observe that these
projections always determine the start-
ing point x. If it further happens that x ∈
B, then these projections determine the
entire hook walk ω as well.

If it happens that ∑
ω∈Ec
Sω=S

q(ω) = ∏
b∈S

q(b), (7)

then we would obtain∑
ω∈Ec

q(ω) = ∑
S⊂B

∑
ω∈Ec
Sω=S

q(ω)
(7)= ∑

S⊂B

∏
b∈S

q(b)
(6)= H(λ)

H(λ\ c)
,

as desired.
Thus, it remains to establish (7). To this end, we argue by induction on |S|, S ⊂ B.

The claim is clear when |S| = 0,1, as these correspond to the hook walks ω where
x = c or x ∈ B, respectively. In both cases the left- and right-hand sides of (7) consist
of one term. So let x ∉ B∪ {c}.

Let xH , xV denote the horizontal and ver-
tical projections of x into B, respectively.
Any hook walk ω ∈ Ec achieving Sω = S
starts either with amove down or amove
to the right. For η the remainder of the
walk after x, we have Sη = S \ {xH } in the
former case, and Sη = S \ {xV } in the latter.
Quickly note by Figure 2 that,

h(x)+1 = h(xH )+h(xV ).

xV

xHx

c

Figure 2: Illustrating Equation (8)
From this it follows that

1 = q(x)

(
1

q(xH )
+ 1

q(xV )

)
. (8)
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We therefore deduce,

∑
ω∈Ec
Sω=S

q(ω) = q(x)

 ∑
η∈Ec

Sη=S\{xH }

q(η)+ ∑
η∈Ec

Sη=S\{xV }

q(η)


I.H.= q(x)

( ∏
b∈S\{xH }

q(b)+ ∏
b∈S\{xV }

q(b)

)

= q(x)

(
1

q(xH )
+ 1

q(xV )

) ∏
b∈S

q(b)

(8)= ∏
b∈S

q(b),

which completes the proof of the hook-length formula.

Exercise 1.4.1 (Rectangle Partitions). Show that f (n,n) = 1
n+1

(2n
n

)
, the nth Catalan

number

Proof. Let R1,R2 denote the first and second rows of the Young diagram of (n,n),
respectively. Then,

∏
x∈(n,n)

h(x) =
( ∏

x∈R1

h(x)

)
·
( ∏

x∈R2

h(x)

)
= (n +1)! ·n! = 1

n +1
n!n!

. . .

. . .

It follows by 1.2 that f (n,n) = (2n)!
(n+1)n!n! = 1

n+1

(2n
n

)
.

*See [Lor18, Exercise 4.3.3]
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